Localization of the MARCKS (87 kDa) protein, a major specific substrate for protein kinase C, in rat brain.

نویسندگان

  • C C Ouimet
  • J K Wang
  • S I Walaas
  • K A Albert
  • P Greengard
چکیده

The localization of MARCKS (myristoylated, alanine-rich C-kinase substrate), a major specific substrate for protein kinase C, has been studied in the rat brain. Light microscopic immunocytochemistry and biochemical analysis demonstrated that the protein is widespread throughout the brain and enriched in certain regions, including the piriform and entorhinal cortices, portions of the amygdaloid complex, the intralaminar thalamic nuclei, the hypothalamus, the nucleus of the solitary tract, nucleus ambiguus, and many catecholaminergic and serotonergic nuclei. Electron microscopic analysis revealed immunoreactivity in axons, axon terminals, small dendritic branches, and occasionally in dendritic spines. In neuronal processes, immunoreactivity was particularly prominent in association with microtubules, but reaction product was also seen in cytosol and adjacent to plasma membranes. No reaction product was observed in large dendrites, somata, or nuclei. A population of strongly immunoreactive glial cells was also observed. Many of these glial cells were morphologically similar to microglial cells, although some resembled astrocytes. In glial cells, both cytoplasm and plasma membranes were heavily labeled. The distribution of the MARCKS protein did not coincide precisely with the distribution of any of the subspecies of protein kinase C. The results indicate that the MARCKS protein is expressed in the majority of cell types in the CNS, and they suggest that the protein may be involved both in glial cell functions and in neuronal functions involving cytoskeletal elements in small dendritic branches and axon terminals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glutamate-stimulated protein phosphorylation in cultured hippocampal pyramidal neurons.

The regulation of second-messenger production and protein phosphorylation by glutamate has been investigated in primary cultures of pure hippocampal pyramidal neurons. Embryonic rat pyramidal neurons were prepared according to the procedures of Bartlett and Banker (1984) and studied 1-21 d after plating. Glutamate caused a transient increase in intracellular free [Ca2+], determined with fura-2,...

متن کامل

Effects of insulin and phorbol esters on MARCKS (myristoylated alanine-rich C-kinase substrate) phosphorylation (and other parameters of protein kinase C activation) in rat adipocytes, rat soleus muscle and BC3H-1 myocytes.

To evaluate the question of whether or not insulin activates protein kinase C (PKC), we compared the effects of insulin and phorbol esters on the phosphorylation of the PKC substrate, i.e. myristoylated alanine-rich C-kinase substrate (MARCKS). In rat adipocytes, rat soleus muscle and BC3H-1 myocytes, maximally effective concentrations of insulin and phorbol esters provoked comparable, rapid, 2...

متن کامل

Myristoylated alanine-rich C kinase substrate (MARCKS) is involved in myoblast fusion through its regulation by protein kinase Calpha and calpain proteolytic cleavage.

MARCKS (myristoylated alanine-rich C kinase substrate) is a major cytoskeletal protein substrate of PKC (protein kinase C) whose cellular functions are still unclear. However numerous studies have implicated MARCKS in the stabilization of cytoskeletal structures during cell differentiation. The present study was performed to investigate the potential role of Ca(2+)-dependent proteinases (calpai...

متن کامل

Learning selectively increases protein kinase C substrate phosphorylation in specific regions of the chick brain.

The effect of imprinting, an early form of exposure learning, on the phosphorylation state of the protein kinase C substrates myristoylated alanine-rich C-kinase substrate (MARCKS) and protein F1/43-kDa growth-associated protein (F1/GAP-43) was studied in two regions of the chick forebrain. One region, the intermediate and medial part of the hyperstriatum ventrale (IMHV), is probably a site of ...

متن کامل

Phosphorylation of myristoylated alanine-rich C kinase substrate is involved in the cAMP-dependent amylase release in parotid acinar cells.

Myristoylated alanine-rich C kinase substrate (MARCKS) is known as a major cellular substrate for protein kinase C (PKC). MARCKS has been implicated in the regulation of brain development and postnatal survival, cellular migration and adhesion, as well as phagocytosis, endocytosis, and exocytosis. The involvement of MARCKS phosphorylation in secretory function has been reported in Ca(2+)-mediat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 10 5  شماره 

صفحات  -

تاریخ انتشار 1990